1.7.5Exercice 5

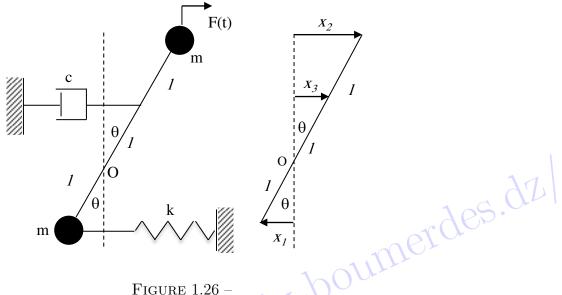


FIGURE 1.26 -

Le système de la figure 1.26, est forcé à osciller autour de la verticale, qui est la position d'équilibre, par une force sinusoïdale F qui reste horizontale lors du mouvement. Elle est donnée par $F = F_0 \cos \omega t$. Les frottements sont modélisés par un frottement visqueux de coefficient c. On suppose que l'amplitude du mouvement reste faible pour admettre l'approximation des faibles angles.

Établir l'équation différentielle du mouvement.

Corrigé de l'exercice 5

$$x_1 = -x_3 = l \sin \theta \simeq l \theta$$

 $x_2 = 2 l \sin \theta \simeq 2 l \theta$

Énergie cinétique

$$T = \frac{1}{2} m \dot{x}_1^2 + \frac{1}{2} m \dot{x}_2^2 = \frac{1}{2} [m l^2] \dot{\theta}^2 + \frac{1}{2} [4 m l^2] \dot{\theta}^2$$

$$T = \frac{1}{2} [5 m l^2] \dot{\theta}^2 \Rightarrow M_0 = 5 m l^2$$

Énergie potentielle

$$U = \frac{1}{2}kx_3^2 - 2 m g l(1 - \cos \theta) + m g l(1 - \cos \theta) = \frac{1}{2}kl^2 \theta^2 - \frac{1}{2}m g l \theta^2$$
$$U = \frac{1}{2}[kl^2 - m g l]\theta^2 \Rightarrow K_0 = kl^2 - m g l$$

Fonction de dissipation

$$D = \frac{1}{2} c \dot{x}_3^2 = \frac{1}{2} c l^2 \dot{\theta}^2$$
 $\Rightarrow C_0 = c l^2$ ar la force d'excitation

Le travail développé par la force d'excitation

$$W = F(t) x_2 = 2 F(t) l \theta$$
$$\Rightarrow F_0 = 2 F(t) l$$

Équation différentielle du mouvement

$$M_0 \ddot{\theta} + K_0 \theta + C_0 \dot{\theta} = F_0$$
$$[5 m l^2] \ddot{\theta} + [k l^2 - m g l] \theta + [c l^2] \dot{\theta} = 2 F(t) l$$